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INTRODUCTION  
 

Pulse crops are energy rich plants and an important 

part of Indian dietary. Among pulses, lentil (Lens 

culinaris. L) is the most important pulse crop in 

the country. Lentil (Lens culinaris L.) is very nu-

tritive and consumed as pulse and in many other 

preparations. With its high nutritional value, lentil 

is primarily a major source of protein, essential nu-

trients such as calcium, zinc and iron for the vege-

tarian populations. Drought stress is one of the 

most devastating environmental stresses, limiting 

the productivity of crop plants around the world. 

Drought stress causes a broad range of physiologi-

cal changes and impairments of metabolic process-

es, which result in accumulation of reactive oxy-

gen species (ROS) (Abid et al., 2018). Drought al-

so causes a substantial reduction in crop produc-

tivity through negatively impacting plant growth, 

physiology, nutrient and water relations, photosyn-

thesis, and assimilate partitioning. It has been 

shown that there is a significant correlation be-

tween the stomatal conductance and photosynthe-

sis response under drought stress, which indicates 

that stomatal conductance play a major role in the 

reduction of leaf photosynthetic rates (Abid et al., 

2018; Sarabi et al., 2019). 

 Plant growth regulators (PGRs) or hor-

mones have been found to improve tolerance of 

plants against the damages caused by abiotic 

stresses. However, limited researches have been 

led to examine the possible benefits of exogenous 
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application of PGRs under drouhgt stress condi-

tions in lentil.  

 Salicylic acid (SA), a phytohormone, is a 

promising compound that can reduce the sensitivi-

ty of plants to environmental stresses through reg-

ulation of the antioxidant defense system, transpi-

ration rates, stomatal movement, and photosynthet-

ic rate (Nazar et al., 2015). It is evident that SA is 

a stress-signal molecule that activates abiotic stress

-responsive gene expression (Li and Zhang, 1999), 

and induces the expression of biosynthetic en-

zymes and proteins in plants under environmental 

stresses (Nazar et al., 2015; Wang et al., 2019). 

Several studies have shown that the application of 

SA resulted in a positive effect by protecting 

plants against the oxidative damage caused by 

drought stress (Kang et al., 2012; Najafabadi and 

Ehsanzadeh, 2017; Wang et al., 2019; Sankari 

et al., 2019). In addition, SA is involved in the reg-

ulation of plant physiological processes including 

stomatal closure, chlorophyll and protein synthe-

sis, nutrient uptake, transpiration, and photosyn-

thesis (Shakirova and Sakhabutdinova, 2003). 

Some studies have indicated that exogenous appli-

cation of SA may lead to improvements in morpho

-physiological traits that are involved in determi-

nation of plant yield of wheat (Triticum aestivum 

L.) (Shakirova and Sakhabutdinova, 2003) and 

maize (Zea maize L.). Furthermore, SA affects iso-

prenoid (a-Tocopherol, carotenoids, and monoter-

penes) accumulation in leaves of plants especially 

under water stress. Putrescine (Put) plays a posi-

tive role in reducing the adverse effects of abiotic 

stresses and improves tolerance against drought. In 

fact, the putrescine was successfully applied to tol-

erate drought condition (Amri and Shahsavar, 

2010).    

 Put application by spraying increased leaf 

area, height, leaf area, and grain yield of wheat 

plants owing to the increase in chlorophyll, water 

status, and the content of Pro, amino acids, and 

soluble sugars (Gupta et al.,2012). Zhu et al., 2019 

showed that foliar Put application to lettuce sub-

jected to drought conditions triggered a reduction 

in stomatal density, keeping chloroplast structure 

and cell turgor. Similarly, Shallan et al., 2012 de-

scribed that Put application as pre treatment in cot-

ton plants improved root to shoot ratio, leaf area, 

number and setting of bolls, seed cotton yield, to-

tal soluble sugars, pigments content, Pro content, 

total free amino acids, total phenols, total soluble 

proteins, total antioxidant capacity, and antioxi-

dant enzyme activities. Put treatment also reduces 

the sensitivity of Medicago sativa plants to PEG-

induced drought stress by reducing the activity of 

the hydrolytic enzymes and increasing the poly-

saccharide, protein and photosynthetic pigment 

contents, and photosynthetic activity (Zaid and 

Shedeed, 2006). Put has the ability to improve an-

atomical features, retaining chlorophyll concentra-

tions and accumulating total soluble phenolic 

compounds in Thymus vulgaris plants, which 

leads to improved oil yield under drought condi-

tions (Abd Elbar et al., 2019)  

 

MATERIALS AND METHODS 
 

Relative water content (RWC, %):  

 Leaf relative water content was measured 

from the first fully expanded leaf from the top in 

normal and flooded plants at pre-flowering stage. 

Leaf relative water content (RWC) was estimated 

by measuring the turgid weight of 0.5 g fresh leaf 

samples by keeping in the water for 4 hours fol-

lowed by drying in the hot air oven till constant 

weight was achieved.  

 

Total chlorophyll content: 

 The total chlorophyll content was deter-

mined in the first fully expanded leaves from the 

top in normal and flooding stressed plants by the 

method of Yoshida. For this, 500 mg leaves were 

washed properly after that, leaves crushed with the 

help of mortar and pestle by using 5 mL of 80% 

acetone solution and a pinch of fine sand followed 

by centrifugation of the crushed material at 5000 
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rpm for 10 minutes and then supernatant was col-

lected in the flask and final volume was made up 

to 50 mL by adding the 80% acetone. Absorbance 

was recorded at the wavelength of 645 and 663 nm 

by using the spectrophotometer (ELICO SL-196).  

 

Soluble sugar content: 

Soluble sugar content was determined in the first 

fully expanded leaves from the top in the normal 

and flooding stressed lentil plant by the method of 

Dubois and expressed as mg g-1 fresh weight. 

 

Estimation of total protein content: 

 The total protein content was determined 

in the leaves of lentils in normal and stressed 

plants at pre-flowering stage by the method of 

Lowry. Two hundred mg leaf sample was homoge-

nized with 10 mL 80% ethanol using mortar and 

pestle and centrifuged it at 4000 rpm for 20 

minutes. The supernatant was kept aside and the 

residue was hydrolyzed with 5 mL of 1 N NaOH 

for overnight and next day centrifuged it again at 

4000 rpm for 20 minutes. Supernatant was collect-

ed and residue was again extracted with 5 mL of 1 

N NaOH after 1 hour of adding it and then centri-

fuged. Both the supernatant were mixed and vol-

ume was made up to 10 mL. Then 0.5 mL superna-

tant and 5 mL alkaline copper solution were added 

and mixture was left for 10 min and after that 0.5 

mL folin reagent was added and incubated at room 

temperature for 1 hour. A blue colour developed 

and thereafter absorbance of the blue colour was 

recorded at 730 nm by using spectrophotometer. 

Bovine serum albumin (BSA) solution was pre-

pared to get the standard curve.  

 

Quantification of Total Phenolic content (TPC) 

 Total phenolic compounds present in the 

aqueous extracts of lentils were quantified spectro-

photometrically through the Folin Ciocalteu test 

following the protocol of Singleton et al. with spe-

cific modifications. Gallic acid (GA) was used as 

standard and distilled water as the blank sample. In 

a 10 ml volumetric flask, 4 ml of distilled water 

were mixed with 0.4 ml  of the standard solution, 

the blank sample, or the extract to be analyzed. 

0.4 ml of Folin–Ciocalteu reagent was then imme-

diately added and the solution was allowed to re-

act for 5 min. At the end of this period, 4 ml of a 

7% Na2CO3 solution was added, the mixture was 

stirred, and the volumetric flask was brought up to 

volume with distilled water. After 90 min of incu-

bation in the dark and at room temperature (± 23 °

C), the solution absorbance was measured at 

730 nm using a spectrophotometer. The TPC was 

expressed as mg equivalents of GA per g of dry 

matter (mg GAE/g). 

 

Total Flavonoid content determination:  

 Total flavonoid content was determined 

by Aluminium chloride method 14 using quercetin 

as a standard. 1ml of test sample and 4 ml of water 

was added to a volumetric flask (10 ml volume). 

Add 0.3 ml of 5 % Sodium nitrite, 0.3 ml of 10% 

Aluminium chloride was added after 5 minutes. 

After 6 minutes incubation at room temperature, 

1ml of 1 M Sodium hydroxide was added to the 

reaction mixture. Immediately the final volume 

was make upto 10 ml with distilled water. Absorb-

ance of sample was measured against the blank at 

510 nm using a spectrophotometer. All the experi-

ment was repeated three times for precision and 

values were expressed in mean ± standard devia-

tion in terms flavonoid content (Quercetin equiva-

lent, QE) per g of dry weight. 

 

Proline estimation 

 Proline and total amino acids may also be 

extracted using a cold extraction procedure by 

mixing 20-50 mg fresh weight aliquots with 0.4-1 

ml of ethanol:water (40:60 v/v). The resulting 

mixture is left overnight a 4°C, and then centri-

fuged at 14000 g (5 min). The cold extraction pro-

cedure can be repeated on the pellet and superna-

tants pooled and used for the analyses by using 

spectrophotometer.  
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RESULTS AND DISCUSSION 
 

In present study we found that drought stress led to 

a remarkable decrease in chlorophyll a and b com-

pared to the control. Foliar application of SA and 

PUT significantly enhanced chlorophyll a and b. 

There was a significant difference in chlorophyll 

contents in different hormone treated and drought 

stress plants (Table 1, Figure 1). Exogenously ap-

plied SA improved photosynthesis in both control 

and drought-stressed plants compared to untreated 

plants. In drought condition in lentils the amounts 

of RWC is decreased remarkably (Figure  2). Sali-

cylic acid treated plants exhibit increased amount 

of RWC in comparision to PUT treated plants. 

Therefore the improvement in RWC by exogenous 

application of SA and PUT may be the result of 

osmotic adjustment because of accumulation of 

compatible solutes like proline. The results also 

show that protein contents increased when plants 

were subjected to drought stress (Figure 3). SA 

and PUT application to plants under drought stress 

remarkebly increased soluble protein content com-

pared to the plants only treated with drought. The 

effect of drought stress on sugar content is shown 

in. The results showed that drought stress signifi-

cantly enhanced the sucrose content compared to 

the control. Sucrose content was significantly 

higher in plants treated with SA compared to the 

control and PUT treated plants. This difference 

was even greater when the SA-treated plants were 

exposed to drought stress, as the highest sucrose 

content was observed in drought stressed-plants 

treated with SA. The effect of drought stress on 

flavonoid contents is shown in figure (Figure 5). 

The result showed that in drought stress, the flavo-

noids were remarkably increased. The plants treat-

ed with SA and PUT showed impressive results 

with increase amount of flavonoids.  Under con-

trol condition there was no significance difference 

of leaf proline content during the experimental pe-

riods. But there was a large variation in proline 

content under drought stress and hormone treated 

plants e.g. SA and PUT (Figure 6). Proline con-

tents in leaves of lentils remarkably increased un-

der drought stress condition and slightly increased 

in hormone treated plants compared to control 

condition. Treatment with SA elevated the total 

phenolic content. PUT treated plant showed high-

est amount of total phenol content in comparison 

to SA and drought stress lentil (Figure 4). 
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Table 1. Effects of SA, PUT and drought on secondary metabolites of lentils under vegetative phase. 

Each value represents the Mean± SD of three replications 

  
Chlorophyll 

a+b 
RWC Protein content Sugar content Phenol Flavonoids Proline 

Control 3.110±0.4899 0.028±0.12832 1.0±0.8164 0.026±0.13165 0.28± 0.64666 0.327±0.7132 0.136±0.67330 

Salicylic 

acid 
3.159±0.6638 0.137±0.05477 1.14±0.8717 0.39±0.50990 0.323±0.46404 0.622±0.41333 0.140±0.2160 

Putrescine 
3.782± 
1.58797 

0.030±0.11832 1.4±0.9486 0.37±2.856 0.33±0.46904 0.378±0.50497 0.137±0.17433 

Drought 2.820±1.2465 0.024± 0.1 1.2±0.88881 0.35±0.48304 0.313±0.45752 0.608±0.63665 0.139±0.68068 
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Figure 1. Effects of SA, PUT and drought on chlorophyll  a+b of lentils under vegetative phase. Each line 

represents the Mean± SD of three replications 

Figure 2. Effects of SA, PUT and drought on RWC contents of lentils under vegetative phase. 

 Each column represents the Mean± SD of three replications 

Figure 3. Effects of SA, PUT and drought on Protein contentsof lentils under vegetative phase. Each line 

represents the Mean± SD of three replications 
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Figure 4. Effects of SA, PUT and drought on Phenol contents of lentils under vegetative phase. Each 

 column represents the Mean± SD of three replications 

Figure 5. Effects of SA, PUT and drought on Flavonoids content of lentils under vegetative phase. Each 

columnrepresents the Mean± SD of three replications 

Figure 6. Effects of SA, PUT and drought on Proline contents of lentils under vegetative phase. Each line 

represents the Mean± SD of three replications 
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CONCLUSION 
 

Drought is a major constraint on crop productivity 

worldwide and is expected to worsen in the near 

future. Hence, scientists are trying to understand 

different drought tolerance mechanisms of plants 

and to develop drought-tolerant crops. Phytohor-

mones like SA and PUT trigger tolerance to 

drought stress via regulation of various morpho-

logical, physiological, biochemical and molecular 

processes.  These phytohormones have great po-

tential to develop drought tolerant crops.  
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